
Python Functions
In this article, you'll learn about functions; what is a function, the syntax, components

and types of a function. Also, you'll learn to create a function in Python.

In Python, function is a group of related statements that perform a specific task.

Functions help break our program into smaller and modular chunks. As our program
grows larger and larger, functions make it more organized and manageable.

Furthermore, it avoids repetition and makes code reusable.

Syntax of Function

def function_name(parameters):

 """docstring"""

 statement(s)

Above shown is a function definition which consists of following components.

1. Keyword def marks the start of function header.
2. A function name to uniquely identify it. Function naming follows the

same rules of writing identifiers in Python.
3. Parameters (arguments) through which we pass values to a function. They

are optional.
4. A colon (:) to mark the end of function header.
5. Optional documentation string (docstring) to describe what the function does.
6. One or more valid python statements that make up the function body.

Statements must have same indentation level (usually 4 spaces).
7. An optional return statement to return a value from the function.

Example of a function
def greet(name):

 """This function greets to

 the person passed in as

 parameter"""

 print("Hello, " + name + ". Good morning!")

https://www.programiz.com/python-programming/keywords-identifier#rules

Function Call

Once we have defined a function, we can call it from another function, program or
even the Python prompt. To call a function we simply type the function name with
appropriate parameters.

>>> greet('Paul')

Hello, Paul. Good morning!

Note: Try running the above code into the Python shell to see the output.

Docstring

The first string after the function header is called the docstring and is short for
documentation string. It is used to explain in brief, what a function does.

Although optional, documentation is a good programming practice. Unless you can
remember what you had for dinner last week, always document your code.

In the above example, we have a docstring immediately below the function header.
We generally use triple quotes so that docstring can extend up to multiple lines. This
string is available to us as __doc__ attribute of the function.

For example:

Try running the following into the Python shell to see the output.

>>> print(greet.__doc__)

This function greets to

 the person passed into the

 name parameter

The return statement

The return statement is used to exit a function and go back to the place from where
it was called.

Syntax of return

return [expression_list]

This statement can contain expression which gets evaluated and the value is
returned. If there is no expression in the statement or the return statement itself is
not present inside a function, then the function will return the None object.

For example:

>>> print(greet("May"))

Hello, May. Good morning!

None

Here, None is the returned value.

Example of return
def absolute_value(num):

 """This function returns the absolute

 value of the entered number"""

 if num >= 0:

 return num

 else:

 return -num

Output: 2

print(absolute_value(2))

Output: 4

print(absolute_value(-4))

How Function works in Python?

Scope and Lifetime of variables

Scope of a variable is the portion of a program where the variable is recognized.
Parameters and variables defined inside a function is not visible from outside.
Hence, they have a local scope.

Lifetime of a variable is the period throughout which the variable exits in the memory.
The lifetime of variables inside a function is as long as the function executes.

They are destroyed once we return from the function. Hence, a function does not
remember the value of a variable from its previous calls.

Here is an example to illustrate the scope of a variable inside a function.

def my_func():

 x = 10

 print("Value inside function:",x)

x = 20

my_func()

print("Value outside function:",x)

Output

Value inside function: 10

Value outside function: 20

Here, we can see that the value of x is 20 initially. Even though the
function my_func()changed the value of x to 10, it did not effect the value outside the
function.

This is because the variable x inside the function is different (local to the function)
from the one outside. Although they have same names, they are two different
variables with different scope.

On the other hand, variables outside of the function are visible from inside. They
have a global scope.

We can read these values from inside the function but cannot change (write) them.
In order to modify the value of variables outside the function, they must be declared
as global variables using the keyword global.

Python Function Arguments
In Python, you can define a function that takes variable number of arguments.
You will learn to define such functions using default, keyword and arbitrary
arguments in this article.

In user-defined function topic, we learned about defining a function and calling it.
Otherwise, the function call will result into an error. Here is an example.

def greet(name,msg):

 """This function greets to

 the person with the provided message"""

 print("Hello",name + ', ' + msg)

greet("Monica","Good morning!")

Output

Hello Monica, Good morning!

Here, the function greet() has two parameters.

https://www.programiz.com/python-programming/user-defined-function

Since, we have called this function with two arguments, it runs smoothly and we do
not get any error.

If we call it with different number of arguments, the interpreter will complain. Below is
a call to this function with one and no arguments along with their respective error
messages.

>>> greet("Monica") # only one argument

TypeError: greet() missing 1 required positional argument: 'msg'

>>> greet() # no arguments

TypeError: greet() missing 2 required positional arguments: 'name' and
'msg'

Variable Function Arguments

Up until now functions had fixed number of arguments. In Python there are other
ways to define a function which can take variable number of arguments.

Three different forms of this type are described below.

Python Default Arguments

Function arguments can have default values in Python.

We can provide a default value to an argument by using the assignment operator (=).
Here is an example.

def greet(name, msg = "Good morning!"):

 """

 This function greets to

 the person with the

 provided message.

 If message is not provided,

 it defaults to "Good

 morning!"

 """

 print("Hello",name + ', ' + msg)

greet("Kate")

greet("Bruce","How do you do?")

In this function, the parameter name does not have a default value and is required
(mandatory) during a call.

On the other hand, the parameter msg has a default value of "Good morning!". So, it
is optional during a call. If a value is provided, it will overwrite the default value.

Any number of arguments in a function can have a default value. But once we have
a default argument, all the arguments to its right must also have default values.

This means to say, non-default arguments cannot follow default arguments. For
example, if we had defined the function header above as:

def greet(msg = "Good morning!", name):

We would get an error as:

SyntaxError: non-default argument follows default argument

Python Keyword Arguments

When we call a function with some values, these values get assigned to the
arguments according to their position.

For example, in the above function greet(), when we called it as greet("Bruce","How
do you do?"), the value "Bruce" gets assigned to the argument name and
similarly "How do you do?" to msg.

Python allows functions to be called using keyword arguments. When we call
functions in this way, the order (position) of the arguments can be changed.
Following calls to the above function are all valid and produce the same result.

>>> # 2 keyword arguments

>>> greet(name = "Bruce",msg = "How do you do?")

>>> # 2 keyword arguments (out of order)

>>> greet(msg = "How do you do?",name = "Bruce")

>>> # 1 positional, 1 keyword argument

>>> greet("Bruce",msg = "How do you do?")

As we can see, we can mix positional arguments with keyword arguments during a
function call. But we must keep in mind that keyword arguments must follow
positional arguments.

Having a positional argument after keyword arguments will result into errors. For
example the function call as follows:

greet(name="Bruce","How do you do?")

Will result into error as:

SyntaxError: non-keyword arg after keyword arg

Python Arbitrary Arguments

Sometimes, we do not know in advance the number of arguments that will be passed
into a function.Python allows us to handle this kind of situation through function calls
with arbitrary number of arguments.

In the function definition we use an asterisk (*) before the parameter name to denote
this kind of argument. Here is an example.

def greet(*names):

 """This function greets all

 the person in the names tuple."""

 # names is a tuple with arguments

 for name in names:

 print("Hello",name)

greet("Monica","Luke","Steve","John")

Output

Hello Monica

Hello Luke

Hello Steve

Hello John

Here, we have called the function with multiple arguments. These arguments get
wrapped up into a tuple before being passed into the function. Inside the function, we
use a for loop to retrieve all the arguments back.

Types of Functions

Basically, we can divide functions into the following two types:

1. Built-in functions - Functions that are built into Python.
2. User-defined functions - Functions defined by the users themselves.

Python Recursion
In this article, you will learn to create a recursive function; a function that calls itself.

Recursion is the process of defining something in terms of itself.

A physical world example would be to place two parallel mirrors facing each other.
Any object in between them would be reflected recursively.

Python Recursive Function

We know that in Python, a function can call other functions. It is even possible for the
function to call itself. These type of construct are termed as recursive functions.

Following is an example of recursive function to find the factorial of an integer.

Factorial of a number is the product of all the integers from 1 to that number. For
example, the factorial of 6 (denoted as 6!) is 1*2*3*4*5*6 = 720.

Example of recursive function
An example of a recursive function to

https://www.programiz.com/python-programming/built-in-function
https://www.programiz.com/python-programming/user-defined-function
https://www.programiz.com/python-programming/function

find the factorial of a number

def calc_factorial(x):

 """This is a recursive function

 to find the factorial of an integer"""

 if x == 1:

 return 1

 else:

 return (x * calc_factorial(x-1))

num = 4

print("The factorial of", num, "is", calc_factorial(num))

In the above example, calc_factorial() is a recursive functions as it calls itself.

When we call this function with a positive integer, it will recursively call itself by
decreasing the number.

Each function call multiples the number with the factorial of number 1 until the
number is equal to one. This recursive call can be explained in the following steps.

calc_factorial(4) # 1st call with 4

4 * calc_factorial(3) # 2nd call with 3

4 * 3 * calc_factorial(2) # 3rd call with 2

4 * 3 * 2 * calc_factorial(1) # 4th call with 1

4 * 3 * 2 * 1 # return from 4th call as number=1

4 * 3 * 2 # return from 3rd call

4 * 6 # return from 2nd call

24 # return from 1st call

Our recursion ends when the number reduces to 1. This is called the base condition.

Every recursive function must have a base condition that stops the recursion or else
the function calls itself infinitely.

Advantages of recursion

1. Recursive functions make the code look clean and elegant.
2. A complex task can be broken down into simpler sub-problems using

recursion.
3. Sequence generation is easier with recursion than using some nested

iteration.

Disadvantages of recursion

1. Sometimes the logic behind recursion is hard to follow through.
2. Recursive calls are expensive (inefficient) as they take up a lot of memory and

time.
3. Recursive functions are hard to debug.

Python Anonymous/Lambda
Function
In this article, you'll learn about the anonymous function, also known as lambda functions. You'll

learn what is it, its syntax and how to use it (with examples).

In Python, anonymous function is a function that is defined without a name.

While normal functions are defined using the def keyword, in Python anonymous
functions are defined using the lambda keyword.

Hence, anonymous functions are also called lambda functions.

Lambda Functions

A lambda function has the following syntax.

Syntax of Lambda Function

lambda arguments: expression

Lambda functions can have any number of arguments but only one expression. The
expression is evaluated and returned. Lambda functions can be used wherever
function objects are required.

Example of Lambda Function

Here is an example of lambda function that doubles the input value.

Program to show the use of lambda functions

double = lambda x: x * 2

Output: 10

print(double(5))

In the above program, lambda x: x * 2 is the lambda function. Here x is the
argument and x * 2 is the expression that gets evaluated and returned.

https://www.programiz.com/python-programming/function

This function has no name. It returns a function object which is assigned to the
identifier double. We can now call it as a normal function. The statement

double = lambda x: x * 2

is nearly the same as

def double(x):

 return x * 2

Use of Lambda Function

We use lambda functions when we require a nameless function for a short period of
time.

In Python, we generally use it as an argument to a higher-order function (a function
that takes in other functions as arguments). Lambda functions are used along with
built-in functions like filter(), map() etc.

Example use with filter()

The filter() function in Python takes in a function and a list as arguments.

The function is called with all the items in the list and a new list is returned which
contains items for which the function evaluats to True.

Here is an example use of filter() function to filter out only even numbers from a
list.

Program to filter out only the even items from a list

my_list = [1, 5, 4, 6, 8, 11, 3, 12]

new_list = list(filter(lambda x: (x%2 == 0) , my_list))

Output: [4, 6, 8, 12]

print(new_list)

Example use with map()

The map() function in Python takes in a function and a list.

https://www.programiz.com/python-programming/function-argument

The function is called with all the items in the list and a new list is returned which
contains items returned by that function for each item.

Here is an example use of map() function to double all the items in a list.

Program to double each item in a list using map()

my_list = [1, 5, 4, 6, 8, 11, 3, 12]

new_list = list(map(lambda x: x * 2 , my_list))

Output: [2, 10, 8, 12, 16, 22, 6, 24]

print(new_list)

Python Modules
In this article, you will learn to create and import custom modules in Python. Also, you

will find different techniques to import and use custom and built-in modules in Python.

Modules refer to a file containing Python statements and definitions.

A file containing Python code, for e.g.: example.py, is called a module and its module
name would be example.

We use modules to break down large programs into small manageable and
organized files. Furthermore, modules provide reusability of code.

We can define our most used functions in a module and import it, instead of copying
their definitions into different programs.

Let us create a module. Type the following and save it as example.py.

Python Module example

def add(a, b):

 """This program adds two

 numbers and return the result"""

 result = a + b

 return result

Here, we have defined a function add() inside a module named example. The
function takes in two numbers and returns their sum.

How to import modules in Python?

We can import the definitions inside a module to another module or the interactive
interpreter in Python.

We use the import keyword to do this. To import our previously defined
module example we type the following in the Python prompt.

>>> import example

https://www.programiz.com/python-programming/function

This does not enter the names of the functions defined in example directly in the
current symbol table. It only enters the module name example there.

Using the module name we can access the function using dot (.) operation. For
example:

>>> example.add(4,5.5)

9.5

Python has a ton of standard modules available.

You can check out the full list of Python standard modules and what they are for.
These files are in the Lib directory inside the location where you installed Python.

Standard modules can be imported the same way as we import our user-defined
modules.

There are various ways to import modules. They are listed as follows.

Python import statement

We can import a module using import statement and access the definitions inside it
using the dot operator as described above. Here is an example.

import statement example

to import standard module math

import math

print("The value of pi is", math.pi)

When you run the program, the output will be:

The value of pi is 3.141592653589793

Import with renaming

We can import a module by renaming it as follows.

import module by renaming it

import math as m

print("The value of pi is", m.pi)

http://docs.python.org/3/py-modindex.html

We have renamed the math module as m. This can save us typing time in some
cases.

Note that the name math is not recognized in our scope. Hence, math.pi is
invalid, m.pi is the correct implementation.

Python from...import statement

We can import specific names from a module without importing the module as a
whole. Here is an example.

import only pi from math module

from math import pi

print("The value of pi is", pi)

We imported only the attribute pi from the module.

In such case we don't use the dot operator. We could have imported multiple
attributes as follows.

>>> from math import pi, e

>>> pi

3.141592653589793

>>> e

2.718281828459045

Import all names

We can import all names(definitions) from a module using the following construct.

import all names from the standard module math

from math import *

print("The value of pi is", pi)

We imported all the definitions from the math module. This makes all names except
those beginnig with an underscore, visible in our scope.

Importing everything with the asterisk (*) symbol is not a good programming practice.
This can lead to duplicate definitions for an identifier. It also hampers the readability
of our code.

Python Module Search Path

While importing a module, Python looks at several places. Interpreter first looks for a
built-in module then (if not found) into a list of directories defined in sys.path. The
search is in this order.

 The current directory.
 PYTHONPATH (an environment variable with a list of directory).
 The installation-dependent default directory.

>>> import sys

>>> sys.path

['',

'C:\\Python33\\Lib\\idlelib',

'C:\\Windows\\system32\\python33.zip',

'C:\\Python33\\DLLs',

'C:\\Python33\\lib',

'C:\\Python33',

'C:\\Python33\\lib\\site-packages']

We can add modify this list to add our own path.

Reloading a module

The Python interpreter imports a module only once during a session. This makes
things more efficient. Here is an example to show how this works.

Suppose we have the following code in a module named my_module.

This module shows the effect of

multiple imports and reload

print("This code got executed")

Now we see the effect of multiple imports.

>>> import my_module

This code got executed

>>> import my_module

>>> import my_module

We can see that our code got executed only once. This goes to say that our module
was imported only once.

Now if our module changed during the course of the program, we would have to
reload it.One way to do this is to restart the interpreter. But this does not help much.

Python provides a neat way of doing this. We can use the reload() function inside
the imp module to reload a module. This is how its done.

>>> import imp

>>> import my_module

This code got executed

>>> import my_module

>>> imp.reload(my_module)

This code got executed

<module 'my_module' from '.\\my_module.py'>

The dir() built-in function

We can use the dir() function to find out names that are defined inside a module.

For example, we have defined a function add() in the module example that we had in
the beginning.

>>> dir(example)

['__builtins__',

'__cached__',

'__doc__',

'__file__',

'__initializing__',

'__loader__',

'__name__',

'__package__',

'add']

Here, we can see a sorted list of names (along with add). All other names that begin
with an underscore are default Python attributes associated with the module (we did
not define them ourself).

For example, the __name__ attribute contains the name of the module.

>>> import example

>>> example.__name__

'example'

All the names defined in our current namespace can be found out using
the dir() function without any arguments.

>>> a = 1

>>> b = "hello"

>>> import math

>>> dir()

['__builtins__', '__doc__', '__name__', 'a', 'b', 'math', 'pyscripter']

Python Package
In this article, you'll learn to divide your code base into clean, efficient modules using Python

packages. Also, you'll learn to import and use your own or third party packages in your Python

program.

We don't usually store all of our files in our computer in the same location. We use a
well-organized hierarchy of directories for easier access.

Similar files are kept in the same directory, for example, we may keep all the songs
in the "music" directory. Analogous to this, Python has packages for directories
and modules for files.

As our application program grows larger in size with a lot of modules, we place
similar modules in one package and different modules in different packages. This
makes a project (program) easy to manage and conceptually clear.

Similar, as a directory can contain sub-directories and files, a Python package can
have sub-packages and modules.

A directory must contain a file named __init__.py in order for Python to
consider it as a package. This file can be left empty but we generally place the
initialization code for that package in this file.

Here is an example. Suppose we are developing a game, one possible organization
of packages and modules could be as shown in the figure below.

https://www.programiz.com/python-programming/modules

Importing module from a package

We can import modules from packages using the dot (.) operator.

For example, if want to import the start module in the above example, it is done as
follows.

import Game.Level.start

Now if this module contains a function named select_difficulty(), we must use the
full name to reference it.

Game.Level.start.select_difficulty(2)

If this construct seems lengthy, we can import the module without the package prefix
as follows.

from Game.Level import start

We can now call the function simply as foll ows.

start.select_difficulty(2)

Yet another way of importing just the required function (or class or variable) form a
module within a package would be as follows.

from Game.Level.start import select_difficulty

https://www.programiz.com/python-programming/function

Now we can directly call this function.

select_difficulty(2)

Although easier, this method is not recommended. Using the full namespace avoids
confusion and prevents two same identifier names from colliding.

While importing packages, Python looks in the list of directories defined in sys.path,
similar as for module search path.

https://www.programiz.com/python-programming/namespace
https://www.programiz.com/python-programming/modules#search

